- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0003000000000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Antle, Alissa N (3)
-
Bai, Zhen (2)
-
Gong, Yunfan (2)
-
Zhou, Xiaofei (2)
-
Cai, Zhenyao (1)
-
Ibrahim, Seray B (1)
-
Jiang, Yufei (1)
-
Kientz, Julie A (1)
-
Pullin, Graham (1)
-
Qiu, Annie (1)
-
Slovak, Petr (1)
-
Xiao, Qinqin (1)
-
Zhang, Chi (1)
-
Zhang, Yi (1)
-
Zhou, Yushan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding howAI recommendationswork can help the younger generation become more informed and critical consumers of the vast amount of information they encounter daily. However, young learners with limited math and computing knowledge often find AI concepts too abstract. To address this, we developed Briteller, a light-based recommendation system that makes learning tangible. By exploring and manipulating light beams, Briteller enables children to understand an AI recommender system’s core algorithmic building block, the dot product, through hands-on interactions. Initial evaluations with ten middle school students demonstrated the effectiveness of this approach, using embodied metaphors, such as "merging light" to represent addition. To overcome the limitations of the physical optical setup, we further explored how AR could embody multiplication, expand data vectors with more attributes, and enhance contextual understanding. Our findings provide valuable insights for designing embodied and tangible learning experiences that make AI concepts more accessible to young learners.more » « lessFree, publicly-accessible full text available April 25, 2026
-
Ibrahim, Seray B; Antle, Alissa N; Kientz, Julie A; Pullin, Graham; Slovak, Petr (, ACM)
-
Zhou, Xiaofei; Zhou, Yushan; Gong, Yunfan; Cai, Zhenyao; Qiu, Annie; Xiao, Qinqin; Antle, Alissa N; Bai, Zhen (, ACM)AI recommendations influence our daily decisions. The convenience of navigating personalized content goes hand-in-hand with the notorious filter bubble effect, which may decrease people’s exposure to diverse options and opinions. Children are especially vulnerable to this due to their limited AI literacy and critical thinking skills. In this study, we propose a novel Augmented Reality (AR) application BeeTrap. It aims to not only raise children’s awareness of filter bubbles but also empower them to mitigate this ethical issue through sense-making of AI recommendation systems’ inner workings. By having children experience and break filter bubbles in a flower recommendation system, BeeTrap utilizes embodied metaphors (e.g., NEAR-FAR, ITERATION) and analogies (bee pollination) to bridge abstract AI concepts with sensory-motor experiences in familiar STEM contexts. To evaluate our design’s effectiveness and accessibility for a broad range of children, we introduced BeeTrap in a four-day summer camp for middle-school students from underrepresented backgrounds in STEM. Results from pre- and post-tests and interviews show that BeeTrap developed students’ technical understanding of AI recommendations, empowered them to break filter bubbles, and helped them foster new personal and societal perspectives around AI technologies.more » « less
An official website of the United States government
